Как работает реверс. Торможение самолета при посадке

Расследование авиационного происшествия, случившегося с пассажирским лайнером в марте 2015 года в США, привело к неожиданным выводам и заставило авиационные власти внести ряд рекомендаций в области безопасности воздушных перевозок.

5 марта 2015 года при выполнении посадки самолет McDonnell Douglas MD-88 выкатился за пределы посадочной полосы аэропорта Ла Гуардиа, сломал ограждение и остановился, уткнувшись носом в дамбу, ограждающую территорию аэропорта от залива Флашинг. Самолет выполнял рейс по маршруту Атланта - Нью-Йорк, посадка проходила в сложных метеоусловиях: был снежный шторм, а из-за выпавшего несколькими часами ранее дождя и понизившейся температуры взлетная полоса оказалась покрыта коркой льда.

Лайнер выкатился с полосы спустя 14 секунд после касания земли и прокатился более полутора километров.

В результате инцидента самолет остановился в нескольких метрах от воды и получил значительные повреждения. Все 125 пассажиров и пять членов экипажа были вынуждены покинуть борт по сломанному крылу, из которого на землю вылилось около 4 тонн топлива.

Сообщалось, что травмы получили 16 пассажиров, один из них был доставлен в больницу.

Национальный совет по безопасности на транспорте США (NTSB) расследовал все обстоятельства авиационного происшествия и согласился c тем, что сложные погодные условия, а также несоответствие степени занесенности полосы снегом переданным условиям захода на посадку стали факторами, вызвавшими стресс у командира воздушного судна. Однако именно его действия, по мнению экспертов, и привели к тому, что самолет выкатился за пределы ВПП.

«Условия посадки, в том числе более заснеженная, чем ожидалось, полоса, ее короткая длина и наличие водной преграды за ее пределами, возможно, усилили сиюминутный стресс капитана и заставили его агрессивно применить реверс. Капитан не смог удержать управление по курсу из-за затенения руля, которое произошло благодаря чрезмерному приложению тяги реверса», — говорится в заключении следствия.

Затенение, или нарушение обдува руля, — проблема, возникающая лишь на определенных типах самолетов,

способная ухудшить или сделать невозможным управление самолетом по курсу при посадке на полосу со скользким покрытием. Проблема возникает лишь у реактивных самолетов с задним расположением двигателей. Дело в том, что сразу после касания полосы для эффективного гашения скорости пилоты реактивных самолетов применяют реверс тяги — когда специально выдвигающиеся створки двигателей отклоняют выхлопную струю вперед, что заставляет самолет тормозить. При этом управление по курсу продолжает осуществляться за счет руля направления, так как скорость самолета еще высока, а управление рулевым колесом затруднено из-за низкого сцепления с полосой.

Но если двигатели лайнера расположены рядом с килем, струя газов при интенсивном реверсе двигателей мешает нормальному обтеканию плоскости руля

и самолет теряет управление, особенно это опасно в случае сильного бокового ветра.

Это и случилось с самолетом MD-88 и не произошло с другими лайнерами, благополучно севшими в то утро в аэропорту Ла Гуардиа. Комиссия установила, что второй пилот понял причину и сказал командиру воздушного судна убрать реверс, тот послушался, но было уже поздно.

Между тем Международная ассоциация пилотов, объединяющая пилотов американских и канадских авиакомпаний, выступила с критическим заявлением относительно результатов расследования.

«Единственное озвученное NTSB объяснение не может полностью учесть множество факторов, которые привели к инциденту. Ассоциация озабочена тем, что NTSB уделил недостаточно внимания отсутствию своевременного и аккуратного измерения состояния полосы и передачи этой информации пилотам», — говорится в заявлении.

По итогам расследования NTSB выдал десять рекомендаций Федеральному управлению гражданской авиации, авиакомпаниям, эксплуатирующим самолеты семейства MD-80, и аэропортовым службам. Так, пилотам самолетов этого семейства

запрещается при посадке на мокрую или обледенелую полосу использовать тягу реверса выше определенного уровня.

Проблема неуправляемости самолета из-за реверса расположенных сзади двигателей появилась не сегодня и не в США. «Чаще всего ошибки повторяются на самолетах, имеющих в задней части фюзеляжа двигатели, оборудованные реверсом тяги (Ту-134 и Ту-154). После выхода двигателей на режим реверсирования эффективность руля направления, обтекаемого турбулентной газовоздушной струей, резко падает. Если в этот момент самолет получит извне импульс к изменению направления, выдержать направление с помощью аэродинамического руля будет проблематично», — напоминает российский пилот, автор книг о гражданской авиации Василий Ершов.

По статистике, выкаты за пределы ВПП делят между собой первое и второе места в рейтинге причин инцидентов с участием гражданской авиации,

и проблема с реверсом — лишь одна из многих причин, приводящих к выкатам. Поэтому у многих пилотов гражданской авиации вызывает недоумение привычка пассажиров по всему миру хлопать сразу после касания шасси посадочной полосы.

Если вы хотите почитать о реверсе тяги двигателя самолета, то я рекомендую обратить внимание на свежую статью на эту тему. Она написана 30.03.13 и располагается на этом сайте в той же рубрике под названием «Еще раз о реверсе тяги… Чуть подробнее… :-)», то есть . А эта статья (где вы сейчас находитесь) на мой взгляд уже не отвечает взыскательным запросам, как собственно моим, так и моих читателей. На сайте, однако, она останется, так что, если хотите, можете обратить внимание и на нее… Разве что для сравнения:-)…

Работа реверса при посадке А-321.

Проблема торможения самолета после посадки на пробеге была малозначимой наверное только на заре авиации, когда самолеты летали медленнее современных автомобилей и были значительно легче последних:-). Но в дальнейшем этот вопрос становился все более важным и для современной авиации с ее скоростями он достаточно серьезен.

Чем же можно затормозить самолет? Ну, во-первых, конечно тормозами, установленными на колесном шасси. Но дело в том, что если самолет имеет большую массу и садится с достаточно большой скоростью, то часто этих тормозов просто не хватает. Они бывают не в состоянии за короткий промежуток времени поглотить всю энергию движения многотонной махины. К тому же если условия контакта (трения) между шинами колес шасси и бетонной полосой не очень хорошие (например, если полоса мокрая во время дождя), то торможение будет еще хуже.

Однако, существуют еще два способа. Первый – это тормозной парашют . Система достаточно эффективная, но не всегда удобная в применении. Представьте себе какой нужен парашют, чтобы затормозить, например, огромный Боинг-747 , и какая должна быть парашютная служба в большом аэропорту, где самолеты садятся, можно сказать, валом:-).

Работа реверса (створки) на аэробусе А-319 компании JeasyJet.

Второй способ в этом плане значительно более удобен. Это реверс тяги двигателя на самолете. Принципиально это достаточно простое устройство, которое создает обратную тягу, то есть направленную против движения самолета, и тем самым его тормозит.

Устройство реверса на ТРД. Видны гидроцилиндры управления реверсивными створками

Реверс тяги могут создавать винтовые самолеты с изменяемого шага (ВИШ ). Это делается путем изменения угла установки лопастей винта в такое положение, когда винт начинает «тянуть» назад. А на реактивных двигателях это делается посредством изменения направления выходящей реактивной струи с помощью устройств реверса, чаще всего выполненных в виде створок, перенаправляющих реактивную струю. Так как нагрузки там многотонные, то створки эти управляются при помощи гидравлической системы.

Реверс на самолете Fokker F-100 компании KLM.

Основное применение реверса тяги – это торможение при пробеге. Но он может применяться и при экстренном торможении при необходимости прекращения взлета. Реже и не на всех самолетах этот режим может применяться при рулении на аэродроме для движения задним ходом, тогда отпадает необходимость в буксировщике. Очень характерен в этом плане шведский истребитель Saab-37 Viggen . Его эволюции можно посмотреть на ролике в конце статьи.

Истребитель Saab 37 Viggen.

Однако справедливости ради стоит сказать, что он чуть ли не единственный самолет, так легко разъезжающий задним ходом:-). И вообще реверс тяги на реактивных двигателях редко применяется на самолетах малого размера (). В основном он получил распространение на лайнерах коммерческой и гражданской авиации и на самолетах.

Стоит сказать, что на некоторых самолетах предусмотрено применение реверса тяги в полете (пример тому пассажирский самолет ATR-72 ). Обычно это возможно для экстренного снижения. Однако на такого рода режимы наложены ограничения и в обычной летной эксплуатации они практически не применяются.

Самолет ATR-72.

Самолета имеет, однако, при всех своих достоинствах и недостатки. Первое – это вес самого устройства. Для авиации вес играет большую роль и часто из-за него (а также из-за габаритов) устройство реверса не применяется на военных истребителях. А второе – это то, что перенаправленная реактивная струя при попадании на взлетную полосу и окружающий грунт способна поднимать в воздух пыль и мусор, который может попасть в двигатель и повредить лопатки компрессора . Такая опасность более вероятна при малых скоростях движения самолета (примерно до 140 км/ч ), при больших скоростях мусор просто не успевает долететь до воздухозаборника. Бороться с этим довольно сложно. Чистота взлетно-посадочной полосы (ВПП ) и рулежных дорожек – это вообще непроходящая проблема аэродромов, и о ней я расскажу в одной из следующих статей.

Самолет ЯК-42

Стоит сказать, что существуют самолеты, которые не нуждаются в устройствах реверса тяги реактивных двигателей. Это такие, как, например, российский ЯК-42 и английский BAe 146-200 . Оба имеют развитую механизацию крыла, значительно улучшающую их взлетно-посадочные характеристики. Особенно показателен в этом плане второй самолет. Он кроме механизации имеет хвостовые воздушные тормоза (щитки), позволяющие ему эффективно гасить скорость на снижении и после посадки на пробеге (вкупе с использованием интерцепторов). Надобность в реверсе отпадает, что делает этот самолет удобным к использованию в аэропортах, находящихся в черте города и поэтому чувствительных к шуму, а также имеющих крутую схему захода на посадку (например, Лондонский городской аэропорт).

Самолет BAe 146-200. Хорошо видны раскрытые тормозные щитки в хвосте.

Однако, такого рода самолетов все же не так много, а реверс тяги уже достаточно хорошо проработанная система, и без нее сегодня немыслима работа аэропортов.

В заключение предлагаю вам посмотреть ролики, в которых хорошо видна работа механизмов реверса. Видно, как реверсированная струя поднимает с бетонки воду. Ну и, конечно, «задний ход» SAABа:-). Смотреть лучше в полноэкранном варианте:-)..

Фотографии кликабельны.

Пассажирский лайнер, мчащийся на высоте 10 000 метров и преодолевающий многие сотни километров в час, должен однажды плавно погасить свою скорость до нуля, замерев на перроне аэропорта. Только тогда полет можно считать успешным. Увы, порой случается и так, что столь популярные в России аплодисменты пилотам после касания самолетом земли могут означать преждевременную радость. Нештатные ситуации после приземления — бич гражданской авиации.

Просто колеса Никаких выдающихся конструктивных особенностей у колес шасси и системы их торможения нет. Почти все как в хорошем автомобиле: дисковые тормоза и система, предотвращающая движение юзом.

Олег Макаров

Сразу хочется оговориться, что данная статья ни в коей мере не имеет своей целью заразить кого-либо аэрофобией. Серьезные авиационные происшествия, тем более с жертвами, мгновенно попадают в заголовки мировых новостей, и это лучшее свидетельство тому, что авиатранспорт отличается высокой степенью безопасности: катастрофа самолета — событие редкое и не рядовое. Тем интереснее разобраться в том, что происходит, когда ни напичканная электроникой современная авиатехника, ни высокая квалификация экипажей не спасают от ситуаций вроде той, что несколько лет назад испортила предновогоднее настроение жителям нашей страны. Речь идет о гибели лайнера Ту-204 — того, что 29 декабря 2012 года не смог погасить скорость после посадки, выкатился за пределы полосы, пробил ограждение аэродрома и разрушился с частичным выносом обломков на Киевское шоссе. Выкатывание самолета за пределы полосы — одна из самых распространенных в мире причин авиакатастроф (то есть авиапроисшествий с человеческими жертвами), порой его называют «убийцей номер один» в гражданской авиации. По статистике IATA (International Air Transport Association), примерно 24% погибших приходится на этот вид происшествий.


Тормозим в воздухе

Прежде чем говорить о причинах этих прискорбных событий, стоит немного остановиться на технической стороне вопроса, вкратце рассказать о том, какие у современного пассажирского лайнера есть возможности для своевременного и управляемого гашения скорости. Когда самолет находится в воздухе, есть лишь два основных способа снизить скорость лайнера: убрать газ, снизив мощность двигателей, и увеличить лобовое сопротивление. Для решения последней задачи существует несколько специализированных приспособлений. Опытные авиапутешественники знают, что крыло имеет большое количество движущихся частей, которые (за исключением элеронов — воздушных рулей крена) объединяются в понятие «механизация крыла». Отклоняющиеся под разными углами панели, которые отвечают за увеличение лобового сопротивления (а также снижение подъемной силы крыла), называются спойлерами. В отечественной авиационной литературе их принято подразделять на собственно спойлеры, интерцепторы и элерон-интерцепторы, в результате чего между этими понятиями возникает путаница. Как нам пояснили в одной из российских авиакомпаний, более правильным сегодня считается общий термин «спойлеры», которые на современных самолетах работают в трех режимах.

Первый режим — режим воздушных тормозов (speed brakes). Используется для уменьшения скорости полета и/или увеличения вертикальной скорости снижения. Управляет этим режимом пилот, перемещая штурвал или рукоятку на нужный угол, при этом отклоняются не все спойлеры, а лишь часть из них.

Второй режим — это совместная работа с элеронами для улучшения характеристик управления по крену (roll spoilers). Отклонение происходит автоматически на углы до семи градусов при соответствующем движении штурвала (ручки управления) по крену, причем отклоняются только внешние (те, что дальше от фюзеляжа) или только внутренние спойлеры (это зависит от конструкции конкретного типа воздушного судна).


Никаких выдающихся конструктивных особенностей у колес шасси и системы их торможения нет. Почти все как в хорошем автомобиле: дисковые тормоза и система, предотвращающая движение юзом.

Наконец, третий режим — наземного торможения (ground spoilers) — представляет для нас наибольший интерес. В этом режиме автоматически отклоняются все спойлеры на максимальный угол, что приводит к резкому снижению подъемной силы. После того как машину фактически перестает держать воздух, возникает эффективная нагрузка на тормозные колеса и начинается торможение с автоматом растормаживания. Этот автомат, называемый антиюзом, фактически не что иное, как антиблокировочная система, функционально аналогичная той, что в наши дни устанавливают на автомобили: ABS пришла из авиации.

Реверс? Можно без него

Кроме спойлеров, самолет располагает еще двумя системами гашения скорости. Во‑первых, это уже упомянутые колесные тормоза. Они выполнены по дисковой схеме, причем для повышения износостойкости в них зачастую применяются диски не из стали, а из композиционных материалов (углепластика). Тормоза приводятся в действие гидравликой, хотя уже появились варианты с электрическими актуаторами.


Этот самолет не покинул полосу и все же подвержен серьезному риску. Заклинило переднюю стойку шасси, и колеса не катятся, а волочатся по полосе и, стираясь, горят. Главное, чтобы стойка не подломилась.

И наконец, реверс — слово, столь часто звучавшее в связи с катастрофой во Внуково. В устройстве реверса тяги часть реактивной струи отклоняется с помощью приводимых в движение гидравликой створок. Таким образом, реактивная тяга уже не толкает самолет вперед, а, напротив, тормозит его. Так может ли быть неисправный реверс виновником катастрофы?

Ответ будет скорее отрицательным, ибо, как свидетельствует практика, единоличного «виновника» у серьезных авиапроисшествий в гражданской авиации вообще не бывает. Катастрофа — это всегда неудачное стечение нескольких обстоятельств, среди которых как технические факторы, так и человеческий. Дело в том, что устройство реверса тяги — это, по сути дела, система аварийного, нештатного торможения.


1.Законцовка крыла снижает лобовое сопротивление, создаваемое срывающимся с конца крыла вихрем, и таким образом увеличивает подъемную силу крыла. Разные производители выпускают законцовки разных форм и даже присваивают им специальные названия: «винглеты», «шарклеты» и т. п. 2. Элероны относятся к аэродинамическим рулям (управляют креном) и не являются частью механизации крыла. 3. Высокоскоростной элерон. 4. Назначение ряда гондол, расположенных под крылом, часто вызывает вопросы у авиапассажиров. Все просто — это обтекатели приводов, которые изменяют положение закрылков. 5. Предкрылок Крюгера (внутренний предкрылок) имеет вид выпадающего щитка. 6. Предкрылки изменяют конфигурацию крыла таким образом, чтобы увеличить допустимый для самолета угол атаки без срыва потока. 7. Выдвинутые закрылки увеличивают подъемную силу крыла, давая возможность самолету держаться в воздухе на малых скоростях (при взлете и посадке). 8. Закрылок. 9. Внешний спойлер. 10. Внутренний спойлер.

Западные типы самолетов, разумеется, оснащены устройствами реверса, но сертифицируются так, как будто его нет. Основное требование предъявляется к энергоемкости тормозов основных стоек шасси. Это означает, что при отсутствии ошибки пилотирования и при всех исправных системах самолет должен, не прибегая к реверсу, сесть на сухую полосу и без проблем погасить скорость, чтобы свернуть на рулежную дорожку. Более того, из-за повышенного уровня шума при отклонении струи во всех аэропортах Евросоюза применение реверса не разрешено при ночных полетах (23:00 — 06:00) за исключением плохого состояния ВПП и/или аварийной ситуации. Современные типы самолетов могут эксплуатироваться как с одним реверсом, так и вообще без них при условии достаточной длины ВПП, даже если она покрыта осадками. Иными словами, при стечении ряда неблагоприятных факторов, способствующих выкатыванию самолета за пределы ВПП, реверс может оказаться последней надеждой на благополучный исход. Но если откажет и он, вряд ли его можно будет считать единственной причиной авиапроисшествия.


Спойлер не только увеличивает лобовое сопротивление, но и организует срыв потока при обтекании воздухом крыла, что приводит к снижению подъемной силы последнего. В ходе полета спойлеры используются, например, для увеличения вертикальной скорости самолета без изменения тангажа. Автоматический выпуск спойлеров на ВПП обеспечивается при их «армировании» — переводе в подготовленное к выпуску положение ARMED. Это как взвод курка на ружье — если не взвести, то и выстрела не будет. Сигналом к выпуску служит сочетание данных от радиовысотомера (высота 0), сенсоров обжатия основных стоек, положение РУД — 0 (малый газ). Незаармированные (по ошибке или забывчивости) спойлеры довольно часто фигурируют в разборах случаев, связанных с выкатыванием за пределы полосы.

Не спешите на посадку!

Одной из главных причин выкатываний самолета за пределы ВПП считается так называемый нестабилизированный заход на посадку. Это понятие включает в себя полет на предпосадочной прямой на повышенных скоростях, с неправильным положением механизации крыла (речь идет прежде всего о закрылках), с отклонением от курса. Среди других причин можно назвать позднее применение колесных тормозов (постулат пилота — «не оставляй тормоза на конец полосы!»). Известны также случаи, когда пилоты получали неточные данные о состоянии ВПП и совершали посадку на скользкую полосу, рассчитывая сесть на сухую.


Согласно отечественным учебникам аэродинамики, посадочная дистанция с применением реверса сокращается на 25−30%, однако современные типы самолетов сертифицируются без учета возможностей реверса. Запуск реверса жестко привязан к срабатыванию датчика обжатия стоек. Такая привязка вызвана горьким опытом нескольких авиакатастроф, причиной которых стало срабатывание реверса в воздухе. В одной из этих катастроф был виновен психически больной японский пилот, включивший реверс при заходе на посадку.

Что происходит, когда самолет движется по глиссаде с превышением заданной (обычно 220 км/ч) скорости? Обычно это означает перелет, касание полосы в нерасчетной точке (особенно если самолет пустой, как это было с Ту-204). Это уже само по себе составляет нештатную ситуацию, которая предполагает использование всех средств торможения, включая реверс, — «запаса» полосы уже нет. Но опасность заключается еще и в том, что лайнер даже после касания полосы продолжает двигаться с нерасчетной высокой скоростью, а чем выше скорость, тем выше подъемная сила крыла. Получается, что машина не катится по полосе, опираясь на нее, а фактически летит, касаясь полосы колесами. В этой ситуации могли не сработать датчики обжатия стоек шасси, которые по‑английски называются более понятным термином weight-on-weels (вес на колесах). Таким образом, с точки зрения автоматики, лайнер продолжает полет и не может выполнять такие чисто наземные операции, как включение реверса или выпуск спойлеров в режиме наземного торможения. А если после касания полосы спойлеры не выпустятся или уберутся, катастрофа практически неминуема. Более того, при слабом сцеплении колес с полосой автоматика антиюза будет растормаживать колеса, как она делала бы это на скользкой поверхности, чтобы избежать потери управления колесами. Тормоза будут работать исправно, но… тормозить они не будут. Ну и если полоса еще действительно скользкая, то шансы избежать выкатывания в описанном случае можно считать практически нулевыми. Последствия же выкатывания зависят от того, на какой скорости это происходит и что оказалось на пути самолета. Таким образом, обстоятельства, ведущие к катастрофе, могут нарастать лавинообразно, и отказ, скажем, реверса не может в данной ситуации иметь решающего значения.


Частоту, с которой в мире происходят инциденты с выкатыванием самолетов за пределы полосы, можно представить себе по аналитическому докладу, подготовленному голландской Национальной аэрокосмической лабораторией в 2005 году. Для подготовки доклада было проанализировано около 400 случаев с выкатыванием, произошедших в мире за предшествовавшие 35 лет. Легко подсчитать, что это более десяти случаев в год, хотя в исследовании особо подчеркивалось, что количество таких авиапроисшествий быстро снижается: сказывается совершенствование авиационной и навигационной техники. К счастью, далеко не все эти случаи развивались по описанному в статье худшему сценарию, однако и из тех, что закончились благополучно, были весьма примечательные. В 2005 году огромный A340, садившийся в аэропорту Торонто рейсом из Парижа, коснулся полосы с перелетом, выкатился за пределы ВПП, частично разрушился и загорелся. К счастью, все три сотни человек на борту выжили.

Как следует из предварительных выводов МАК, катастрофа во Внуково развивалась по похожему сценарию, причем скорость лайнера во время выкатывания составляла 190 км/ч, всего на 30 км/ч меньше той скорости, на которой самолет должен был коснуться посадочной полосы. Отсюда трагический финал.


Есть куда стремиться

Инциденты с выкатыванием за пределы взлетно-посадочной полосы случаются в разных странах и на разных континентах, но все же некоторая социально-географическая зависимость просматривается. Согласно исследованиям, чаще всего подобные инциденты происходят в Африке, далее следуют Южная и Центральная Америка, затем Азия. В развитых странах такие происшествия случаются менее чем одно на два миллиона посадок. Лучше всего дело обстоит в Северной Америке, и это при колоссальном воздушном движении в небе над США. В этом, собственно, нет ничего удивительного: в развивающихся странах больше старой авиатехники, она хуже обслуживается, там много плохо оборудованных аэропортов и устаревшее навигационное оборудование, да и технологическая дисциплина ниже. Все это в какой-то степени можно сказать и об авиационном хозяйстве России, да и случаи выкатывания, в том числе с жертвами, у нас не так редки. Но скорее бы уж покинуть эту компанию аутсайдеров.

Реверс – механизм для направления части реактивной или воздушной струи по направлению движения воздушного судна и создания обратной тяги. Помимо этого, реверсом называют используемый режим работы двигателя самолета , который задействует реверсивное устройство.

Устройство применяется в основном после посадки, на пробеге или для аварийного торможения. Кроме того, реверс используют для движения задним ходом без помощи буксирующего средства. Некоторые самолеты включают реверс прямо в воздухе. Чаще всего устройство эксплуатируется в транспортной и коммерческой авиации. После посадки реверс характеризируется шумом. Его применяют вместе с колесной тормозной системой, что приводит к снижению нагрузки на основную тормозную систему воздушного судна и сокращает дистанцию, в особенности при небольшом коэффициенте сцепления с ВПП, а также в самом начале пробега. Вклад реверсивной тяги сильно отличается в разных ситуациях и моделях самолетов.

Реактивный двигатель

Реверс производится при отклонении всей или части струи, которая поступает с двигателя, при помощи разных затворок. В разнообразных силовых установках реверсивное устройство реализуется по-разному. Специальные затворки способны перекрыть струю, которая создана сугубо внешним контуром турбореактивного двигателя (как на А320), или струи всех контуров (Ту-154М). Конструктивные особенности самолета влияют на оснащение реверса. Это могут быть как все двигатели, так и определенная часть. К примеру, на трехдвигательном Ту-154 реверс могут создавать только крайние двигатели, а самолет Як-40 – средний.

Ковшевые створки – специальный механизм, который перенаправляет воздушный поток. Подобных створок на двигателях может быть от двух и больше. Внешне они похожи на ковши. Например, в двигателе с высокой степенью двухконтурности с перекрытием потока по всей плоскости как у Д-30Ку-154 (Ту-154М).

Способ реверса, в котором в сопле и задней части двигателя установлен специальный металлический профиль, называется профилированные решетки. Двигатель задействован на прямой тяге, а сворки в решетки перенаправляют проход выходящих газов. Подобная конструкция эксплуатируется во многих двигателях самолетов, в частности на силовых установках с невысокой степенью двухконтурности с перекрыванием всего потока (Ту-154, Боинг 727).

Ограничения

Но у реверсной системы есть свои недостатки. К возможным неприятностям можно отнести применение реверса на небольших скоростях (меньше 140 км/ч). Струя может поднимать с поверхности ВПП мусор, который при пробеге самолета на небольших скоростях может попасть в воздухозаборник и стать причиной его повреждения. При больших скоростях поднятый мусор не создает помех из-за того, что не успевает на высоту воздухозаборника.

На реверсивное устройство установлено на четыре двигателя, но в практике 2-м и 3-м двигателем реверс не применяется, потому процесс может повредить обшивку фюзеляжа.

Двигатель с воздушным винтом

Реверс у винтовых воздушных суден реализуется при помощи поворота лопастей винта (меняется угол атаки лопастей на отрицательный), а именно при неменяемом направлении вращения. Поэтому винт создает обратную тягу. Подобный тип реверсивного устройства способен использоваться на поршневых и на турбовинтовых двигателях. Реверс часто предусматривается на амфибиях и гидросамолетах.

Впервые применение реверса началось в 30-х годах. Реверсом оборудовались пассажирские самолеты «Дуглас ДК-2» и «Боинг 247».

Самолеты без реверсивного устройства

Огромное количество самолетов не использует реверс по его ненадобности или технической сложности. К примеру, в связи с некоторыми способностями механизации крыла и высокой эффективностью воздушных тормозов в хвосте ВАе 146-200 включение реверса не требуется. Соответственно, все 4 двигателя в режиме реверса не работают. По той же причине в устройстве реверса не нуждается самолет Як-42.

Большинство летательных аппаратов с форсажными камерами не обладает реверсом из-за величины после посадочного пробега. Это обстоятельство принуждает строить длинные ВПП, в конце которых следует устанавливать аварийные приспособления для торможения. Самолеты в этом случае оборудуются эффективными колесными тормозами и парашютами. Нужно отметить, что пневматика и тормоза подобных самолетов подвергаются сильному износу и часто требуют замены.

Применение реверса в воздухе

Часть самолетов допускает возможность использования реверса тяги прямо в воздухе, но подобное включение зависит от типа самолета. В некоторых ситуациях реверс включается перед посадкой, а в иных – в момент снижения, что значительно понижает вертикальную скорость торможения или дает возможность избежать допустимого превышения скоростей во время пикирования, экстренного снижения или выполнения боевых маневров.

ATR 72 – турбовинтовой авиалайнер, яркий пример использования реверса в воздухе. Кроме того, воздушный реверс могут применять турбореактивный лайнер «Трайдент», сверхзвуковой авиалайнер «Конкорд », военно-транспортный самолет С-17А, истребитель Сааб 37 «Вигген» , турбовинтовой «Пилатус РС-6 » и прочие.

Для безопасной посадки самолета крайне важен исправный тормоз. Уменьшение посадочной дистанции возможно при эксплуатации множества приспособлений, начиная от стандартных тормозов и заканчивая аэродинамическими сложными устройствами. Самым распространенным способом торможения считается аэродинамический. В этом случае применяется резкое повышение лобового сопротивления летательного аппарата. Для аэродинамического торможения у большинства самолетов при осуществлении посадки выдвигаются тормозные специальные щитки. У иных типов ЛА они монтируются по-разному:

    На нижней или верхней поверхности крыла.

    По бокам фюзеляжа.

    В нижней части фюзеляжа.

Гораздо сильнее выражено применение тормозного парашюта. Такое приспособление выбрасывается на прочных стропах из специального контейнера, который находится в хвосте самолета. Парашют быстро заполняется набегающим воздухом и резко тормозит судно, что существенно сокращает длину пробега при посадке. В некоторых случаях такое торможение уменьшает до 60% ВПП.

Создаваемая парашютом тормозная сила пропорциональна квадрату скорости. По этой причине выпускать парашют следует сразу же после момента приземления. Таким образом повышается эффективность процесса. Для выпускания парашюта пилот при помощи гидравлического или электрического привода открывает отсек, в котором расположен парашютный ранец. После этого выбрасывается вытяжной парашют, который вытягивает купол и стропы главного парашюта. Существуют разные системы тормозных парашютов: крестообразные, ленточные и с круговыми щелями. Очень важно, чтобы купол обладал достаточной воздухопроницаемостью. Это обеспечивает нужную устойчивость и исключает возможность раскачивания самолета. Однако одновременно воздухопроницаемость не должна быть слишком большой, поскольку тормозная сила может сильно уменьшится.

Как правило, парашют крепится к ЛА через срезную шпильку. В том случае, если возникает большая перегрузка, она срезается, предотвращая подачу очень больших напряжений. Тормозные парашюты испытывают огромную нагрузку и поэтому быстро изнашиваются. Если дует боковой ветер, их использование затрудняется.

Эксплуатация тормозных парашютов в отечественной авиации началась примерно 70 лет назад. В 1937 году для доставки в высокие широты советской арктической авиацией применялись тормозные парашюты. Однако в то время их эксплуатация рассчитывалась сугубо на военные самолеты.

Практически все пассажирские и военные самолеты обладают колесными тормозами. Принцип действия почти не отличается от автомобильных тормозов. Единственная сложность состоит в том, что тормоза колес самолета при торможении должны поглотить огромное количество энергии, в особенности при торможении тяжелых типов самолетов, обладающих большими посадочными скоростями.

На быстроту торможения прямо пропорционально влияет мощность тормозов, опыт и умения пилота, коэффициент трения пневматики. Эффективность зависит от способности колесных тормозов поглощать и рассеивать образовавшуюся при процессе торможения теплоту.

В 20-х годах в авиации начали распространяться распорные колодочные тормоза. Облицованные органическим мягким материалом колодки для торможения прижимались к внутренней поверхности барабана цилиндра из малоуглеродистой стали. Но энергоемкость подобных тормозов недостаточна даже по отношению к легким самолетам. Их заменили камерные тормоза. Они обладали цилиндрическими барабанами. Колодки заменялись пластинами из фрикционного материала, расположенного по окружности на поверхности кольцевой резиновой камеры.

В процессе торможения в камеру под давлением подается жидкость или воздух. В результате пластинки прижимались к внутренней поверхности барабана. Таким образом использовалась вся окружность тормозного барабана, обеспечивался равномерный контакт поверхностей.

Но камерные тормоза отлично подходят для больших колес, а эксплуатация шасси с многоколесными тележками или колес небольшого диаметра привела к необходимости создания нового типа тормозов. Таким образом конструкторы изобрели дисковые тормоза.

При небольших размерах подобные тормоза отличались высокой энергоемкостью и могли развивать сильное тормозное усилие. Они отлично подходили для принудительного охлаждения. Дисковые тормоза многотипные и до сих пор применяются в мировой авиации.

Многодисковый тормоз складывается из нескольких неподвижных тонких дисков, которые чередуются с вращающимися дисками. Между дисками в расторможенном состоянии есть зазор и колесо. При торможении диски сжимаются, друг об друга трутся и развивают тормозное усилие. Даже малого объема многодисковый тормоз способен поглотить много кинетической энергии. Кроме того, существуют и однодисковые тормоза, обладающие неподвижными фрикционными накладками, расположенными попарно с обеих сторон сильно вращающегося диска. Во время торможения каждая пара прижимается к диску поршнем гидравлического отдельного цилиндра.

В первоначальных конструкциях этих тормозов использовались диски из малоуглеродистой стали, а после этого их заменили сплавными дисками, которые сохранили твердость и износоустойчивость в большом диапазоне температур. Фрикционными парами к сплавам стали отлично подходят сплоченные по методу чугун и бронза. Добавление разных присадок – керамики, графита, оксида алюминия и других – влияет на физико-механические свойства материала. Для уменьшения массы тормозов инженеры и ученые ищут новые материалы. Созданы колесные тормоза с изогнутыми термической обработкой материалами. Они покрыты армированными волокнами углерода. Каждый подобный тормоз намного легче обычного и сохраняет при высоких температурах прочность.

В новых тормозах устранилась вибрация, скрип и равномерность торможения. Эти тормоза обладают сильной износостойкостью. Современные колесные тормоза поглощают большое количество энергии. К примеру, многодисковый тормоз колеса ЛА «Боинг-707» поглощает 6,15-106 кгс*м кинетической энергии. Из-за выделения большого количества теплоты очень часто появляется необходимость установки защиты корпуса колеса и шины специальными тепловыми экранами и использования искусственного охлаждения дисков.

В некоторых конструкциях тормоза обдуваются огромным количеством воздуха, который подается от компрессора двигателя, в иных распыленная вода подается конкретно к дискам. Существуют также циркуляционные специальные системы с теплообменниками. В начальной стадии пробега колесные тормоза малоэффективные. На малой скорости применяют аэродинамические тормоза, которые при большей скорости создают больший упор. Таким образом, колесные и аэродинамические тормоза взаимодействуют между собой.

Условия посадки различаются между собой в зависимости от состояния взлетно-посадочной полосы (ВПП), погоды и прочего. Поэтому крайне важно, насколько пилот мастерски владеет способностью торможения. В результате множества доработки исследований на самолеты стали устанавливать автоматы торможения, которые позволяют достигать значения коэффициента трения пневматических элементов. Коэффициент трения, который получается пи эксплуатации автомата торможения, может быть вдвое больше в сравнении с его значением. Эффективность торможения повышается с ростом нагрузки на колеса, из-за чего очень важно быстрее понизить подъемную силу крыльев после приземления. Закрылки убираются сразу же.

На турбовинтовых и поршневых самолетах давно применялось торможение реверсированием тяги винтов. Перед посадкой меняется угол установки лопастей. Винту придается отрицательное значение, что впоследствии приводит к возникновению направленной назад тяги. Еще более эффективным считается реверсирование тяги на ЛА с турбореактивными двигателями. После турбины двигателя поток газов направляется противоположно первоначальному движению. Образовывается отрицательная тяга, тормозящая самолет.

Реверсирование тяги позволяет производить торможение самолета не только во время пробега, но и непосредственно в воздухе, до приземления. В свою очередь это приводит к повышению сокращения посадочной дистанции. Существуют газодинамические и механические методы отклонения потока для реверса тяги. В первом варианте поток отклоняется при помощи струи сжатого воздуха, во втором – часть потока газа отклоняется дефлекторами. Создавая реверсивные устройства, конструкторы заботятся о том, чтобы потоки раскаленного газа не плавили обшивку самолета.

Все вышеперечисленные бортовые средства торможения позволяют сильно уменьшить длину пробега при посадке, но все же она остается относительно большой. Резкое уменьшение длины пробега возможно при эксплуатации стационарных устройств, установленных на некоторых аэродромах (в основном на авианосцах). В основном подобные задерживающие устройства представлены прочными тросами – аэрофинишерами. Они натягиваются поперек посадочной полосы на высоте 10-15 см над палубой авианосца или ВПП. Через систему блоков концы тросов соединяются с поршнями гидравлических силовых цилиндров. Во время посадки самолет установленным крюком цепляется за трос. Основная масса кинетической энергии самолета расходуется на продвижение поршня в цилиндре. Через 20-30 м воздушное судно останавливается.